Cardiac structural and sarcomere genes associated with cardiomyopathy exhibit marked intolerance of genetic variation.
نویسندگان
چکیده
BACKGROUND The clinical significance of variants in genes associated with inherited cardiomyopathies can be difficult to determine because of uncertainty regarding population genetic variation and a surprising amount of tolerance of the genome even to loss-of-function variants. We hypothesized that genes associated with cardiomyopathy might be particularly resistant to the accumulation of genetic variation. METHODS AND RESULTS We analyzed the rates of single nucleotide genetic variation in all known genes from the exomes of >5000 individuals from the National Heart, Lung, and Blood Institute's Exome Sequencing Project, as well as the rates of structural variation from the Database of Genomic Variants. Most variants were rare, with over half unique to 1 individual. Cardiomyopathy-associated genes exhibited a rate of nonsense variants, about 96.1% lower than other Mendelian disease genes. We tested the ability of in silico algorithms to distinguish between a set of variants in MYBPC3, MYH7, and TNNT2 with strong evidence for pathogenicity and variants from the Exome Sequencing Project data. Algorithms based on conservation at the nucleotide level (genomic evolutionary rate profiling, PhastCons) did not perform as well as amino acid-level prediction algorithms (Polyphen-2, SIFT). Variants with strong evidence for disease causality were found in the Exome Sequencing Project data at prevalence higher than expected. CONCLUSIONS Genes associated with cardiomyopathy carry very low rates of population variation. The existence in population data of variants with strong evidence for pathogenicity suggests that even for Mendelian disease genetics, a probabilistic weighting of multiple variants may be preferred over the single gene causality model.
منابع مشابه
Apical Hypertrophic Cardiomyopathy in a Case with Chest Pain and Family History of Sudden Cardiac Death: A Case Report
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiovascular disease, which is caused by a multitude of mutations in genes encoding proteins of the cardiac sarcomere (1). Apical hypertrophic cardiomyopathy (AHCM) is an uncommon type of HCM. The sudden cardiac death is less likely to occur in the patients inflicted with AHCM (2). Herein, we presented the case of a 29-year-old man ...
متن کاملGenetic Variations Leading to Familial Dilated Cardiomyopathy
Cardiomyopathy is a major cause of death worldwide. Based on pathohistological abnormalities and clinical manifestation, cardiomyopathies are categorized into several groups: hypertrophic, dilated, restricted, arrhythmogenic right ventricular, and unclassified. Dilated cardiomyopathy, which is characterized by dilation of the left ventricle and systolic dysfunction, is the most severe and preva...
متن کاملGenetic clues to disease pathways in hypertrophic and dilated cardiomyopathies.
Hypertrophic Cardiomyopathy: More Than a Disease of the Sarcomere? A common finding in genetic analyses of an inherited condition is that a single clinical entity can be caused by mutations in multiple genes. Similarly, different mutations within a single gene can give rise to surprisingly diverse clinical conditions. Against this background, the genetic complexity that has been shown to underl...
متن کاملNovel genotype–phenotype associations demonstrated by high-throughput sequencing in patients with hypertrophic cardiomyopathy
OBJECTIVE A predictable relation between genotype and disease expression is needed in order to use genetic testing for clinical decision-making in hypertrophic cardiomyopathy (HCM). The primary aims of this study were to examine the phenotypes associated with sarcomere protein (SP) gene mutations and test the hypothesis that variation in non-sarcomere genes modifies the phenotype. METHODS Unr...
متن کاملPrevalence of sequence variants in the RAS-mitogen activated protein kinase signaling pathway in pre-adolescent children with hypertrophic cardiomyopathy.
BACKGROUND Most cases of apparently idiopathic hypertrophic cardiomyopathy (HCM) in children are caused by mutations in cardiac sarcomere protein genes. HCM also commonly occurs as an associated feature in some patients with disorders caused by mutations in genes encoding components of the RAS-mitogen activated protein kinase (MAPK) signaling pathway. Although diagnosis of these disorders is ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation. Cardiovascular genetics
دوره 5 6 شماره
صفحات -
تاریخ انتشار 2012